5 research outputs found

    Phase transition between synchronous and asynchronous updating algorithms

    Full text link
    We update a one-dimensional chain of Ising spins of length LL with algorithms which are parameterized by the probability pp for a certain site to get updated in one time step. The result of the update event itself is determined by the energy change due to the local change in the configuration. In this way we interpolate between the Metropolis algorithm at zero temperature for pp of the order of 1/L and for large LL, and a synchronous deterministic updating procedure for p=1p=1. As function of pp we observe a phase transition between the stationary states to which the algorithm drives the system. These are non-absorbing stationary states with antiferromagnetic domains for p>pcp>p_c, and absorbing states with ferromagnetic domains for p≤pcp\leq p_c. This means that above this transition the stationary states have lost any remnants to the ferromagnetic Ising interaction. A measurement of the critical exponents shows that this transition belongs to the universality class of parity conservation.Comment: 5 pages, 3 figure
    corecore